视频:4.1目标检测:准备数据集(采集、标注和划分)
文件夹组织形式:
将收集的图像存放于
JPEGImages
文件夹下,例如存储在D:\MyDataset\JPEGImages
创建与图像文件夹相对应的文件夹
Annotations
,用于存储标注的xml文件,如D:MyDataset\Annotations
标注工具:labelimg、labelme、vott
#划分数据集#paddlex--split_dataset--formatVOC--dataset_dirbottle--val_value0.2--test_value0.1importpaddlexaspdximportosfrompaddleximporttransformsasT#定义transformstrain_transforms=([(short_sizes=[352,384,416],max_size=448,interp=CUBIC),(),()])eval_transforms=([(short_size=416,max_size=448,interp=CUBIC),()])#定义训练和验证用的数据集train_dataset=(data_dir=bottle,file_list=bottle/train_,label_list=bottle/,transforms=train_transforms,shuffle=True)eval_dataset=(data_dir=bottle,file_list=bottle/val_,label_list=bottle/,transforms=eval_transforms,shuffle=False)#初始化模型,并进行训练num_classes=len(train_)model=(num_classes=num_classes,backbone=ResNet50,with_fpn=True)(num_epochs=12,train_dataset=train_dataset,train_batch_size=2,eval_dataset=eval_dataset,learning_rate=0.0025,lr_decay_epochs=[8,11],warmup_steps=100,warmup_start_lr=0.00025,save_dir=output/faster_rcnn_fpn-bottle,use_vdl=True)
#划分数据集7:2:1#paddlex--split_dataset--formatVOC--dataset_dirbottle--val_value0.2--test_value0.1#输出部署模型#paddlex--export_inference--model_dirbest_model--save_dirinferenceimportpaddlexaspdximportcv2import[CUDA_VISIBLE_DEVICES]=0,1predictor=(output/faster_rcnn_fpn-bottle/inference_model,use_gpu=True)imgfile=bottle/JPEGImages/Zw_9_1_47.pngimg=(imgfile)result=(img)print(result)vis_img=(img,result,threshold=0.5,save_dir=None)(result,vis_img)(0)()